<br>(1)反证法<br>可设α<sub>r</sub>能由向量组α<sub>1</sub>,α<sub>2</sub>,…,α<sub>r-1</sub>线性表示,即α<sub>r</sub>=k<sub>1</sub>α<sub>1</sub>+k<sub>2</sub>α<sub>2</sub>+…+k<sub>r-1</sub>α<sub>r-1</sub>.由向量β可由向量组α<sub>1</sub>,α<sub>2</sub>,…,α<sub>r</sub>线性表示,有β=l<sub>1</sub>α<sub>1</sub>+l<sub>2</sub>α<sub>2</sub>+…+l<sub>r-1</sub>α<sub>r-1</sub>+l<sub>r</sub>α<sub>r</sub>.所以有<br>β=(l<sub>1</sub>+l<sub>r</sub>k<sub>1</sub>)α<sub>1</sub>+(l<sub>2</sub>+l<sub>r</sub>k<sub>2</sub>)α<sub>2</sub>+…+(l<sub>r-1</sub>+l<sub>r</sub>kl<sub>r-1</sub>)α<sub>r-1</sub>,即β可由向量组α<sub>1</sub>,α<sub>2</sub>,…,α<sub>r-1</sub>线性表示,这与已知条件相矛盾,故α<sub>r</sub>不能由向量组α<sub>1</sub>,α<sub>2</sub>,…,α<sub>r-1</sub>线性表示.<br>(2)由β=l<sub>1</sub>α<sub>1</sub>+l<sub>2</sub>α<sub>2</sub>+…+l<sub>r-1</sub>α<sub>r-1</sub>+l<sub>r</sub>α<sub>r</sub>和β不能由向量组α<sub>1</sub>,α<sub>2</sub>,…,α<sub>r-1</sub>线性表示,可知l<sub>r</sub>≠0,故<img src="/s/tiw/p3/UpLoadImage/2013-05-07/1085b09b-5c9a-4200-bf67-9db29a42b501.png" width="239" height="45">,即α<sub>r</sub>可由向量组α<sub>1</sub>,α<sub>2</sub>,…,α<sub>r-1</sub>线性表示.